`define HMAX 108 // H total dots `define HSIZ 80 // H Size `define HSP 87 // H Sync. Pos. `define HSL 2 // H Sync. Len. `define HCR 16 // H dots per Char. `define VMAX 48 // V total Line `define VSIZ 45 // V Size `define VSP 46 // V Sync. Pos. `define VSL 1 // V Sync. Line `define VCR 16 // V lines per Char.また、カウンタの宣言は以下のとおりとなる。
reg [3:0] CNT; reg [7:0] HCNT; // H Counter 0-107 reg [6:0] VCNT; // V Counter 0- 47 reg [4:0] RCNT; // R Counter 0- 15
変更後(赤い部分のみ追加・変更すること) |
---|
`timescale 1 ns / 1 ps module cga_v1_0 # ( // Users to add parameters here // User parameters ends // Do not modify the parameters beyond this line // Parameters of Axi Slave Bus Interface S00_AXI parameter integer C_S00_AXI_DATA_WIDTH = 32, parameter integer C_S00_AXI_ADDR_WIDTH = 16 ) ( // Users to add ports here input wire CGA_CLK, output wire [3:0] VGA_R, output wire [3:0] VGA_G, output wire [3:0] VGA_B, output wire VGA_HS, output wire VGA_VS, // User ports ends // Do not modify the ports beyond this line // Ports of Axi Slave Bus Interface S00_AXI input wire s00_axi_aclk, input wire s00_axi_aresetn, input wire [C_S00_AXI_ADDR_WIDTH-1 : 0] s00_axi_awaddr, input wire [2 : 0] s00_axi_awprot, input wire s00_axi_awvalid, output wire s00_axi_awready, input wire [C_S00_AXI_DATA_WIDTH-1 : 0] s00_axi_wdata, input wire [(C_S00_AXI_DATA_WIDTH/8)-1 : 0] s00_axi_wstrb, input wire s00_axi_wvalid, output wire s00_axi_wready, output wire [1 : 0] s00_axi_bresp, output wire s00_axi_bvalid, input wire s00_axi_bready, input wire [C_S00_AXI_ADDR_WIDTH-1 : 0] s00_axi_araddr, input wire [2 : 0] s00_axi_arprot, input wire s00_axi_arvalid, output wire s00_axi_arready, output wire [C_S00_AXI_DATA_WIDTH-1 : 0] s00_axi_rdata, output wire [1 : 0] s00_axi_rresp, output wire s00_axi_rvalid, input wire s00_axi_rready ); // Instantiation of Axi Bus Interface S00_AXI cga_v1_0_S00_AXI # ( .C_S_AXI_DATA_WIDTH(C_S00_AXI_DATA_WIDTH), .C_S_AXI_ADDR_WIDTH(C_S00_AXI_ADDR_WIDTH) ) cga_v1_0_S00_AXI_inst ( .CGA_CLK(CGA_CLK), .R(VGA_R), .G(VGA_G), .B(VGA_B), .HS(VGA_HS), .VS(VGA_VS), .S_AXI_ACLK(s00_axi_aclk), .S_AXI_ARESETN(s00_axi_aresetn), .S_AXI_AWADDR(s00_axi_awaddr), .S_AXI_AWPROT(s00_axi_awprot), .S_AXI_AWVALID(s00_axi_awvalid), .S_AXI_AWREADY(s00_axi_awready), .S_AXI_WDATA(s00_axi_wdata), .S_AXI_WSTRB(s00_axi_wstrb), .S_AXI_WVALID(s00_axi_wvalid), .S_AXI_WREADY(s00_axi_wready), .S_AXI_BRESP(s00_axi_bresp), .S_AXI_BVALID(s00_axi_bvalid), .S_AXI_BREADY(s00_axi_bready), .S_AXI_ARADDR(s00_axi_araddr), .S_AXI_ARPROT(s00_axi_arprot), .S_AXI_ARVALID(s00_axi_arvalid), .S_AXI_ARREADY(s00_axi_arready), .S_AXI_RDATA(s00_axi_rdata), .S_AXI_RRESP(s00_axi_rresp), .S_AXI_RVALID(s00_axi_rvalid), .S_AXI_RREADY(s00_axi_rready) ); // Add user logic here // User logic ends endmodule |
変更後(赤い部分のみ追加)(青い部分のみコメント) にすること |
---|
`timescale 1 ns / 1 ps `define HMAX 108 // H total Char. `define HSIZ 80 // H Size `define HSP 87 // H Sync. Pos. `define HSL 2 // H Sync. Len. `define HCR 16 // H dots per Char. `define VMAX 48 // V total Line `define VSIZ 45 // V Size `define VSP 46 // V Sync. Pos. `define VSL 1 // V Sync. Line `define VCR 16 // V lines per Char. module CGA_v1_0_S00_AXI # ( // Users to add parameters here // User parameters ends // Do not modify the parameters beyond this line // Width of S_AXI data bus parameter integer C_S_AXI_DATA_WIDTH = 32, // Width of S_AXI address bus parameter integer C_S_AXI_ADDR_WIDTH = 16 ) ( // Users to add ports here input wire CGA_CLK, output wire [3:0] R, output wire [3:0] G, output wire [3:0] B, output wire HS, output wire VS, // User ports ends // Do not modify the ports beyond this line // Global Clock Signal input wire S_AXI_ACLK, // Global Reset Signal. This Signal is Active LOW input wire S_AXI_ARESETN, // Write address (issued by master, acceped by Slave) input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_AWADDR, // Write channel Protection type. This signal indicates the // privilege and security level of the transaction, and whether // the transaction is a data access or an instruction access. input wire [2 : 0] S_AXI_AWPROT, // Write address valid. This signal indicates that the master signaling // valid write address and control information. input wire S_AXI_AWVALID, // Write address ready. This signal indicates that the slave is ready // to accept an address and associated control signals. output wire S_AXI_AWREADY, // Write data (issued by master, acceped by Slave) input wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_WDATA, // Write strobes. This signal indicates which byte lanes hold // valid data. There is one write strobe bit for each eight // bits of the write data bus. input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] S_AXI_WSTRB, // Write valid. This signal indicates that valid write // data and strobes are available. input wire S_AXI_WVALID, // Write ready. This signal indicates that the slave // can accept the write data. output wire S_AXI_WREADY, // Write response. This signal indicates the status // of the write transaction. output wire [1 : 0] S_AXI_BRESP, // Write response valid. This signal indicates that the channel // is signaling a valid write response. output wire S_AXI_BVALID, // Response ready. This signal indicates that the master // can accept a write response. input wire S_AXI_BREADY, // Read address (issued by master, acceped by Slave) input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_ARADDR, // Protection type. This signal indicates the privilege // and security level of the transaction, and whether the // transaction is a data access or an instruction access. input wire [2 : 0] S_AXI_ARPROT, // Read address valid. This signal indicates that the channel // is signaling valid read address and control information. input wire S_AXI_ARVALID, // Read address ready. This signal indicates that the slave is // ready to accept an address and associated control signals. output wire S_AXI_ARREADY, // Read data (issued by slave) output wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_RDATA, // Read response. This signal indicates the status of the // read transfer. output wire [1 : 0] S_AXI_RRESP, // Read valid. This signal indicates that the channel is // signaling the required read data. output wire S_AXI_RVALID, // Read ready. This signal indicates that the master can // accept the read data and response information. input wire S_AXI_RREADY ); // AXI4LITE signals reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_awaddr; reg axi_awready; reg axi_wready; reg [1 : 0] axi_bresp; reg axi_bvalid; reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_araddr; reg axi_arready; reg [C_S_AXI_DATA_WIDTH-1 : 0] axi_rdata; reg [1 : 0] axi_rresp; reg axi_rvalid; // Example-specific design signals // local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH // ADDR_LSB is used for addressing 32/64 bit registers/memories // ADDR_LSB = 2 for 32 bits (n downto 2) // ADDR_LSB = 3 for 64 bits (n downto 3) localparam integer ADDR_LSB = (C_S_AXI_DATA_WIDTH/32) + 1; localparam integer OPT_MEM_ADDR_BITS = 13; //---------------------------------------------- //-- Signals for user logic register space example //------------------------------------------------ //-- Number of Slave Registers 4 /* reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg0; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg1; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg2; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg3; */ reg [7:0] VRAM0 [0:1023]; reg [7:0] VRAM1 [0:1023]; reg [7:0] VRAM2 [0:1023]; reg [7:0] VRAM3 [0:1023]; reg [`HCR-1:0] CGROM[0:4095]; wire slv_reg_rden; wire slv_reg_wren; reg [C_S_AXI_DATA_WIDTH-1:0] reg_data_out; integer byte_index; // I/O Connections assignments assign S_AXI_AWREADY = axi_awready; assign S_AXI_WREADY = axi_wready; assign S_AXI_BRESP = axi_bresp; assign S_AXI_BVALID = axi_bvalid; assign S_AXI_ARREADY = axi_arready; assign S_AXI_RDATA = axi_rdata; assign S_AXI_RRESP = axi_rresp; assign S_AXI_RVALID = axi_rvalid; // Implement axi_awready generation // axi_awready is asserted for one S_AXI_ACLK clock cycle when both // S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is // de-asserted when reset is low. always @( posedge S_AXI_ACLK ) begin if ( S_AXI_ARESETN == 1'b0 ) begin axi_awready <= 1'b0; end else begin if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID) begin // slave is ready to accept write address when // there is a valid write address and write data // on the write address and data bus. This design // expects no outstanding transactions. axi_awready <= 1'b1; end else begin axi_awready <= 1'b0; end end end // Implement axi_awaddr latching // This process is used to latch the address when both // S_AXI_AWVALID and S_AXI_WVALID are valid. always @( posedge S_AXI_ACLK ) begin if ( S_AXI_ARESETN == 1'b0 ) begin axi_awaddr <= 0; end else begin if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID) begin // Write Address latching axi_awaddr <= S_AXI_AWADDR; end end end // Implement axi_wready generation // axi_wready is asserted for one S_AXI_ACLK clock cycle when both // S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is // de-asserted when reset is low. always @( posedge S_AXI_ACLK ) begin if ( S_AXI_ARESETN == 1'b0 ) begin axi_wready <= 1'b0; end else begin if (~axi_wready && S_AXI_WVALID && S_AXI_AWVALID) begin // slave is ready to accept write data when // there is a valid write address and write data // on the write address and data bus. This design // expects no outstanding transactions. axi_wready <= 1'b1; end else begin axi_wready <= 1'b0; end end end // Implement memory mapped register select and write logic generation // The write data is accepted and written to memory mapped registers when // axi_awready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. Write strobes are used to // select byte enables of slave registers while writing. // These registers are cleared when reset (active low) is applied. // Slave register write enable is asserted when valid address and data are available // and the slave is ready to accept the write address and write data. assign slv_reg_wren = axi_wready && S_AXI_WVALID && axi_awready && S_AXI_AWVALID; always @( posedge S_AXI_ACLK ) begin if ( S_AXI_ARESETN == 1'b0 ) begin /* slv_reg0 <= 0; slv_reg1 <= 0; slv_reg2 <= 0; slv_reg3 <= 0; */ end else begin if (slv_reg_wren) begin if( S_AXI_WSTRB[0] ) VRAM0[ axi_awaddr[ ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB ] ] = S_AXI_WDATA[ 7: 0]; if( S_AXI_WSTRB[1] ) VRAM1[ axi_awaddr[ ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB ] ] = S_AXI_WDATA[15: 8]; if( S_AXI_WSTRB[2] ) VRAM2[ axi_awaddr[ ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB ] ] = S_AXI_WDATA[23:16]; if( S_AXI_WSTRB[3] ) VRAM3[ axi_awaddr[ ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB ] ] = S_AXI_WDATA[31:24]; /* case ( axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] ) 2'h0: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 0 slv_reg0[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 2'h1: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 1 slv_reg1[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 2'h2: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 2 slv_reg2[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 2'h3: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 3 slv_reg3[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end default : begin slv_reg0 <= slv_reg0; slv_reg1 <= slv_reg1; slv_reg2 <= slv_reg2; slv_reg3 <= slv_reg3; end endcase */ end end end // Implement write response logic generation // The write response and response valid signals are asserted by the slave // when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. // This marks the acceptance of address and indicates the status of // write transaction. always @( posedge S_AXI_ACLK ) begin if ( S_AXI_ARESETN == 1'b0 ) begin axi_bvalid <= 0; axi_bresp <= 2'b0; end else begin if (axi_awready && S_AXI_AWVALID && ~axi_bvalid && axi_wready && S_AXI_WVALID) begin // indicates a valid write response is available axi_bvalid <= 1'b1; axi_bresp <= 2'b0; // 'OKAY' response end // work error responses in future else begin if (S_AXI_BREADY && axi_bvalid) //check if bready is asserted while bvalid is high) //(there is a possibility that bready is always asserted high) begin axi_bvalid <= 1'b0; end end end end // Implement axi_arready generation // axi_arready is asserted for one S_AXI_ACLK clock cycle when // S_AXI_ARVALID is asserted. axi_awready is // de-asserted when reset (active low) is asserted. // The read address is also latched when S_AXI_ARVALID is // asserted. axi_araddr is reset to zero on reset assertion. always @( posedge S_AXI_ACLK ) begin if ( S_AXI_ARESETN == 1'b0 ) begin axi_arready <= 1'b0; axi_araddr <= 32'b0; end else begin if (~axi_arready && S_AXI_ARVALID) begin // indicates that the slave has acceped the valid read address axi_arready <= 1'b1; // Read address latching axi_araddr <= S_AXI_ARADDR; end else begin axi_arready <= 1'b0; end end end // Implement axi_arvalid generation // axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both // S_AXI_ARVALID and axi_arready are asserted. The slave registers // data are available on the axi_rdata bus at this instance. The // assertion of axi_rvalid marks the validity of read data on the // bus and axi_rresp indicates the status of read transaction.axi_rvalid // is deasserted on reset (active low). axi_rresp and axi_rdata are // cleared to zero on reset (active low). always @( posedge S_AXI_ACLK ) begin if ( S_AXI_ARESETN == 1'b0 ) begin axi_rvalid <= 0; axi_rresp <= 0; end else begin if (axi_arready && S_AXI_ARVALID && ~axi_rvalid) begin // Valid read data is available at the read data bus axi_rvalid <= 1'b1; axi_rresp <= 2'b0; // 'OKAY' response end else if (axi_rvalid && S_AXI_RREADY) begin // Read data is accepted by the master axi_rvalid <= 1'b0; end end end // Implement memory mapped register select and read logic generation // Slave register read enable is asserted when valid address is available // and the slave is ready to accept the read address. assign slv_reg_rden = axi_arready & S_AXI_ARVALID & ~axi_rvalid; always @(*) begin // Address decoding for reading registers reg_data_out <= { VRAM3[ axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] ], VRAM2[ axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] ], VRAM1[ axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] ], VRAM0[ axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] ] }; /* case ( axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] ) 2'h0 : reg_data_out <= slv_reg0; 2'h1 : reg_data_out <= slv_reg1; 2'h2 : reg_data_out <= slv_reg2; 2'h3 : reg_data_out <= slv_reg3; default : reg_data_out <= 0; endcase */ end // Output register or memory read data always @( posedge S_AXI_ACLK ) begin if ( S_AXI_ARESETN == 1'b0 ) begin axi_rdata <= 0; end else begin // When there is a valid read address (S_AXI_ARVALID) with // acceptance of read address by the slave (axi_arready), // output the read dada if (slv_reg_rden) begin axi_rdata <= reg_data_out; // register read data end end end // Add user logic here initial begin $readmemh( "MB_VRAM0.mif", VRAM0 ); $readmemh( "MB_VRAM1.mif", VRAM1 ); $readmemh( "MB_VRAM2.mif", VRAM2 ); $readmemh( "MB_VRAM3.mif", VRAM3 ); $readmemh( "18x18ja_256.mif", CGROM ); end reg [7:0] HCNT; // H Counter 0-99 reg [6:0] VCNT; // V Counter 0-27 reg [3:0] RCNT; // R Counter 0-18 wire CEP; reg [3:0] CNT; wire [14:0] VADR; // VideoRAM Address reg [ 7:0] CCOD; // Character Code reg [11:0] CGADR; // CGROM Address reg [`HCR-1:0] CGDATA; // Character Raster Data reg [`HCR-1:0] SR; // Shift Register wire DE; // USER logic implementation added here always @( posedge CGA_CLK ) if( ~S_AXI_ARESETN ) CNT <= 0; else CNT <= CNT + 1; assign CEP = &CNT; // 3.125MHz 1/16 for character clock // Counter always @( posedge CGA_CLK ) begin if( ~S_AXI_ARESETN ) begin HCNT<=0; RCNT<=0; VCNT<=0; end if( CEP ) begin if( HCNT == `HMAX-1 ) begin HCNT <= 0; if( RCNT == `VCR-1 ) begin RCNT <= 0; if( VCNT == `VMAX-1 ) VCNT <= 0; else VCNT <= VCNT + 1; end else RCNT <= RCNT + 1; end else HCNT <= HCNT + 1; end end // VRAM assign VADR = VCNT * `HSIZ + HCNT; always @( posedge CGA_CLK ) if( CEP ) case( VADR[1:0] ) 2'b00: CGADR <= { VRAM0[ VADR[12:2] ], RCNT }; 2'b01: CGADR <= { VRAM1[ VADR[12:2] ], RCNT }; 2'b10: CGADR <= { VRAM2[ VADR[12:2] ], RCNT }; 2'b11: CGADR <= { VRAM3[ VADR[12:2] ], RCNT }; endcase // CGROM always @( posedge CGA_CLK ) CGDATA= CGROM[ CGADR ]; always @( posedge CGA_CLK ) begin if ( ~S_AXI_ARESETN ) SR <= 0; else if ( CEP ) SR <= CGDATA; else SR <= { SR[`HCR-2:0], 1'b0 }; end //Sync assign HS = ~( HCNT >= `HSP & HCNT < (`HSP + `HSL) ); assign VS = ~( VCNT >= `VSP & VCNT < (`VSP + `VSL) ); assign DE = ( ( 1 < HCNT & HCNT < `HSIZ+2 ) && ( VCNT < `VSIZ ) && (RCNT < `VCR ) ); assign { R, G, B } = ( SR[`HCR-1] && DE ) ? 12'hfff : 12'h000; // User logic ends endmodule |